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ABSTRACT 

Mutations in protein amino acids are usually associated with several challenging diseases such as 

cancer, sickle cell anemia, and Alzheimer. Ras proteins are small GTPase proteins that regulate 

the signaling pathway for cell growth, proliferation and differentiation. Mutations of Ras proteins 

are observed in many human cancers. Therefore, numerous studies of Ras proteins are carried 

out to investigate mutations on their conformational differences, dynamics, allosteric 

communications and signaling. In this work, we used molecular dynamics simulations and 

Markov state models to study the effects of TYR32 phosphorylation on G12D K-Ras. Markov 

state models provided us with a coarse-grained picture consisting of few metastable state 

conformations. They also helped us identify the probability of each one of these states along with 

the kinetic transition rates among them. We show that the phosphorylation significantly alters 

switch region conformations and dynamics. In addition, we show that G12D K-Ras and its 

phosphorylated mutant exhibit different conformational states. 
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 ملخص

مراض حد العوامل التي تتسبب في العديد من الأأللبروتينات  الأمينيةسلسلة الحموض  تركيبةتعتبر الطفرات في 

تسمى إنزيمات من عائلة جزءً  Rasتعد بروتينات   مثل السرطان وفقر الدم المنجلي والزهايمر. المستعصية

GTPase  حيث  ،داخل الخلية الإشاراتمسؤولة عن عدة وظائف داخل الخلية منها نقل  . هذه الإنزيماتالصغيرة

. السرطانيةلعديد من الاورام ا  Rasطفرات بروتينتسبب بعض . الخلايا وتكاثر وانقسامها في عملية نمو رتقوم بدو

من خلال  الخلوية لهذه البروتينات والتفاعلاتالاشارات و الديناميكية والتأثيرات التكوينيةالفروق  دراسةتمت  لذلك

ثير فسفرة أماركوف لدراسة ت ونماذج للجزيئات يناميكية. في هذا البحث استعملنا المحاكاة الدعدد كبير من الدراسات

من بشكل أبسط  للبروتين   والديناميكيةالتكوينية  التغيرات لنا صورت . نماذج ماركوف32 الحمض الأميني تيروسين

الدراسة  في ومعدلات الانتقال فيما بينها.حدوثها احتمالاتها  وتحديدمستقرة الشبه تعريف عدد قليل من الحالات خلال 

مناطق معينة في بشكل خاص على  .تينالبرو ينيةوتكو يناميكيةن الفسفرة تؤثر بشكل خاص على دأ أثبتنا أيضاالحالية 

 .ىمختلفة عن الأخر تكوينية بحالات طفرةكل  وتتميز البروتين تسمى المفاتيح
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CHAPTER 1: INTRODUCTION 

Understanding the dynamics of a protein and its three-dimensional structure from their amino 

acid sequences is important to decipher its function and malfunction. For example, many 

diseases are associated with changes in protein structure such as sickle cell anemia, Alzheimer 

and cancer. In this thesis, we are interested in studying Ras mutations which have been shown to 

play a critical role in many human cancers. In particular, phosphorylation of Tyr32 in K-Ras has 

evidently been shown to influence its catalytic activity and function by disrupting its GTPase 

cycle, and hence leading to different types of cancer. In this work, we investigated the 

conformational and dynamical effects of Tyr32 phosphorylation in G12D K-Ras by molecular 

dynamics (MD) simulation and Markov state models. The thesis is organized as follows: First, 

we give a brief introduction about K-Ras protein and MD simulations. In the second chapter, we 

briefly introduce Markov state models and the different related techniques required to build it. In 

chapter 3, we describe the setup of our MD simulations systems and the procedure used to carry 

out these simulations. We also describe the method used to build Markov state models from MD 

simulation trajectories. Finally, the last chapter discusses the results obtained from MD 

simulations and Markov state models constructed for G12D K-Ras and its phosphorylated 

variant. 

1.1. K-Ras protein 

 Kirsten Rat Sarcoma (K-Ras) protein is one of the best characterized and ubiquitously expressed 

GTPases in most human cells [1]. It selectively attaches to the inner leaflet surface of the plasma 

via a farnesylated C-terminus and polybasic domain [2, 3]. K-Ras structure features two main 

domain components: the catalytic domain (Figure 1.1B, amino acids 1−166) and the membrane  
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Figure 1.1: G12D K-Ras sequence and structure. (A)  The sequence of the amino acids of the catalytic domain 

(amino acids 1−166) and HVR (amino acids 167−189) of G12D K-Ras proteins. The SI and SII regions are 

highlighted by bold font, while the residues 12 and 32 highlighted in red. (B) G12D K-Ras structure shown in 

cartoon with the location of the mutations studied in this work. Residues 12 and 32 are highlighted by purple and 

green spheres respectively. Switches SI and SII (residues 60-75) are in red and blue respectively. 

 

targeting (HVR region, amino acids 167−189 + farnesyl anchor). The latter membrane anchoring 

region is not conserved and has notable sequence differences among Ras isoforms (Figure 1.1B). 

Conversely, the highly conserved catalytic domain of K-Ras interacts with effectors and 
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exchange factors by modulating the conformations of two flexible canonical switches: switch 1 

(SI: residues 25−40) and 2 (SII: residues 60−75). These conformation changes are primarily 

modulated by the hydrolysis of GTP molecule to GDP which represents the molecular switch 

state changing from the active to the inactive state [4, 5]. In GTP bound state, the two switches 

and the P-loop (residues 10−17) form the closed conformation of GTP binding site. Ras is 

activated by guanine nucleotide-binding site and the Ras-GTP binding activate downstream 

effector effectors, including Raf kinase, PI3K, and Ral guanine nucleotide dissociation stimulator 

(RalGDS) [6-9]. Similar to other Ras isoforms, it regulates the slinging pathways controlling 

growth, proliferations and differentiation of cells [10-12]. 

It has been shown that in oncogenic Ras, mutations affect GTP hydrolysis [13, 14], and 

that mutations at 32 position particularly exhibit reduced catalytic activity [15]. The activity of 

GTPases is also decreased by the mutation of K-Ras G12X that lead to increased K-Ras 

signaling and more active GTP-bound present [16, 17]. Notably, G12D K-Ras mutation is the 

most frequently mutated oncogenic found in human cancer. Most G12X mutations show 

insensitivity to GTPase-activating protein (GAPs) that accelerate GTP hydrolysis [19]. 

Furthermore, oncogenic Ras mutants activate the downstream effectors that promote cell 

proliferation, consequently leading to tumor development. [18, 20]. The role of Tyr32 in 

determining configuration of the active site has been long established. It has been shown that 

Tyr32 has a critical role in inducing the conformational change in Ras that modulates its GTPase 

activity and the effector binding [21-23]. Gorfe and Coworkers suggested that Tyr32 orientation 

along with the relative arrangement of SI and SII can be used to uniquely determine the active 

and inactive conformations in many experimental and simulated structures [24]. 
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The phosphorylation of protein has a significant effect on its function effects and 

conformational states. It usually alters the local chemical environment by creating a chemical 

shift in the modified residues and their adjacent residues [25, 26]. For example, the 

phosphorylation and dephosphorylation process of Ras modulate its activity and they are mainly 

mediated by Src and SHP2 protein tyrosine phosphate (PTP) [27]. The phosphorylation process 

induced by Src regulates the GTPase cycle by impairing Raf binding [28]. In contrast, the 

dephosphorylation process induced by SHP2 negatively impact the GTPase cycle by enhancing 

Raf binding [29]. Therefore, any disruption to the balance between these processes may lead to 

adverse functional effects and various cancers. 

Recent biophysical experiments have suggested that phosphorylation of Tyr32 of K-Ras 

attenuates its sensitivity to GAP and GEF activities which induced intrinsic nucleotide exchange 

and impair intrinsic GTP hydrolysis. It reduces the binding affinity of K-Ras to its effector Raf 

[30]. Tyr32 phosphorylation is thought to alter SI and SII conformations as a result of the 

additional electrostatics repulsion against the negatively charged Asp38 and Asp57 residues 

within the nucleotide-binding site [31]. The conformation changes in the orientation of SI which 

significantly affects the affinity of Ras for its effector proteins Raf, lead to reducing downstream 

signaling mitogen-activated extracellular signal-regulated kinase (MEK)-to-extracellular signal-

regulated kinase (ERK) and phosphoinositide-3 kinase-to-AKT signaling [31]. 

Although these experimental studies have revealed the importance of Tyr32 

phosphorylation, its effects on K-Ras structure and dynamics are still not fully understood. 

Several MD simulation studies investigated the structure, dynamics and function of Ras 

oligomerization, isoforms or mutants [32-40]. To that end, in this work we investigate the 

underlying structural and dynamical changes that lead to effects observed due to phosphorylation 
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of Tyr32 of K-Ras. We therefore carried out two 500 ns MD simulations of G12D K-Ras and 

pTyr32-G12D. Also, we identified metastable conformational states and the kinetic network of 

transitions between them using Markov state model (MSM). 

1.2. Molecular dynamic simulations 

MD simulations are commonly utilized to study the physical and chemical properties of a system 

of molecules or atoms. In fact, they are currently one of the important methods to study the 

structure and function of proteins. They also enable us to estimate protein physical properties 

that might be difficult to access through experiments. In the last decades, protein simulations had 

a big evolution due to the use of supercomputers and development of new more efficient 

techniques [36, 41-49].  

In MD simulations, the physical motions of atoms in a protein are resolved by the 

integration of Newton equations of motion for every atom in the system in which the initial 

coordinates are taken from X-ray crystal or NMR structures [50]:  

mi

d2r⃗i

dt2
= −∇⃗⃗⃗iV(r⃗1, r⃗2, … . . , r⃗N) 

(1.1) 

where 𝑚𝑖  𝑎𝑛𝑑 r⃗i  are the mass and coordinates of each atom in the system respectively. The 

potential energy, 𝑉, is estimated using a force field for a system of N interacting atoms. It is 

given by 
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𝑉 = ∑
1

2
𝑘𝑏(𝑟 − 𝑟0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑
1

2
𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
1

2
𝑘𝜉(𝜉 − 𝜉0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝑘𝜙[1 + cos(𝑛𝜙 − 𝛿)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑
1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
+ 𝜖𝑖𝑗 (

𝑅𝑚𝑖𝑛
12

𝑟𝑖𝑗
12 −

𝑅𝑚𝑖𝑛
6

𝑟𝑖𝑗
6 )

𝑎𝑡𝑜𝑚
𝑝𝑎𝑖𝑟𝑠

 

 

(1.2) 

where 𝑟0 𝑎𝑛𝑑 𝜃0 are the equilibrium bond length and angle, respectively. 𝜙 is the dihedral angle 

and 𝑛 is the multiplicity of the function. 𝑘𝑏 , 𝑘𝜃, 𝑘𝜉  and 𝑘𝜙 are the bond, angle, improper dihedral 

and dihedral constants, respectively. 𝜖 𝑎𝑛𝑑 𝑅𝑚𝑖𝑛 are the well depth and zeros of the Lennard-

Jones potential. 𝜖0  is the free space permittivity and 𝑞  is the localized charge on each atom. 

Finally,  𝑟𝑖𝑗’s are the inter-particle distances. The Force field function contains bonded and non-

bonded terms. Bonded terms include harmonic oscillator energy of bond lengths, bond angles, 

and sometimes improper dihedrals as well as torsional dihedral angles. The non-bonded terms 

include Van der Waals interactions and electrostatic interactions. Examples of force fields 

available to study proteins are CHARMM [51], AMBER [52] and GROMOS [53].  
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CHAPTER 2: MARKOV STATE MODELS   

Markov state models [54] deal with a statistical process called Markov chains in which only the 

current state of a system can affect its transition to the next state. The state is considered 

memoryless if the future state depends only on the current state and not on previous states in the 

system. The system is called Markovian if all states in the system are memoryless. In the late 

1990s, Schütte  and his colleagues used Markov state models to understand MD trajectories [55]. 

Markov state models and related techniques have also been developed with the availability of 

significant computing power for a few research groups since the mid 2000s [56-58]. Nowadays, 

Markov state models (MSMs) have become a popular technique in computational biophysics for 

the identification of stationary and kinetic states from MDs trajectories. User-friendly software is 

available for building Markov state models such as MSMbuilder [59] and PyEMMA [60]. MSMs 

have been used to analyze many complex molecular processes such as protein folding [61], 

protein-ligand binding [62, 63], peptide dynamic [64] and peptide aggregations [65]. 

MSMs are also used for determining molecular kinetics [66]. They can readily describe 

the slow relaxation processes by kinetic characterization. They can identify the structural 

changes for these processes and approximate the rates and time scales at which they occur. The 

model built to approximate a MD trajectory by a Markov chain requires partitioning the 

conformation space into discrete states. It estimates the kinetic behavior of the system with 

transition probability matrix that helps find the system in any discrete state after a fixed time 𝜏. 

The discrete description of molecular kinetics approximates the exact eigenvector and eigenvalue 

of the propagator of continuous dynamics. 
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𝒫𝜙𝑖 = 𝜆𝑖𝜙𝑖       (2.1) 

where 𝒫  is the transfer operator that propagates probability densities of molecular 

configurations, 𝜙𝑖  are its eigenfunctions, and 𝜆𝑖 are the associated eigenvalues. Eq.(2.1) defines 

all stationary and kinetic quantities when solved for eigenvalues and associated eigenfunctions.  

Let 𝑟1, … , 𝑟𝑑 ∈ ℝ be a possible large set of 𝑑 order parameters of a molecular system that 

are a priori specified. We aim to find a linear combination of these order parameters that 

optimally approximate the subspace spanned by the dominant eigenfunctions. Here, the 

variational principle of conformation dynamics is used to get the best solution for the problem. 

Furthermore, Time-lagged independent component analysis (TICA) that combine information 

from the covariance matrix and a time-lagged covariance matrix of the data is used for 

constructing Markov models.  Principal component analysis (PCA) is another method used for 

dimension reduction of an order parameter space by projecting it on its linear subspace of the 

largest amplitude motion. But, in this case slow modes are not necessarily associated with large 

amplitudes.  

2.1. Theory 

2.1.1. Exact dynamics in full configuration space 

Let x𝑡  be the full molecular configuration at time 𝑡 in a state or phase space Ω. We assume that 

the MD are statistically reversible Markovian in Ω and the stationary density 𝜇(𝑥) is given by a 

Boltzmann distribution density: 

𝜇(x) = 𝑍−1𝑒−𝛽𝐻(x) (2.2) 
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where H is the Hamiltonian of the system, Z is the partition function, and 𝛽 = (𝑘𝐵𝑇)−1 is the 

inverse temperature. 

If the propagator 𝒫(𝜏) acts on the probability density of molecular configuration 𝜌𝑡, it 

will describe the probability that a trajectory at configuration x𝑡  at time 𝑡 will be found at a 

configuration x𝑡+𝜏 after 𝜏 time interval: 

𝜌𝑡+𝜏 = 𝒫(𝜏)𝜌𝑡 (2.3) 

The propagator can be written by expanding it in terms of its eigenvalues as 

𝜆𝑖(𝜏) = 𝑒−𝜏 𝑡𝑖⁄  (2.4) 

where 𝑡𝑖  are the corresponding timescales; it relates to eigenvalues and experimentally 

measurable relaxation rate 𝜅𝑖 of the system as 

𝑡𝑖
−1 = 𝜅𝑖 = −

𝑙𝑛𝜆𝑖

𝜏
 

(2.5) 

And its eigenfunctions 𝜙𝑖 can be written as: 

𝜌𝑡+𝜏(𝑦) = 𝒫(𝜏)𝜌𝑡(x) = ∑ 𝑒−𝜏 𝑡𝑖⁄ 〈𝜓𝑖, 𝜌𝑡〉𝜙𝑖

∞

𝑖=1

 
(2.6) 

The first eigenvalue is 𝜆 = 1  with first relaxation timescales 𝑡1 =∞  and correspond to the 

stationary distributions, while the remaining eigenvalues have a norm strictly smaller than 1 with 

finite relaxation timescale  𝑡𝑖 . 𝜓𝑖(x)  are the weighted eigenfunctions by a stationary density 

where 𝜓𝑖(x) = 𝜇−1(x)𝜙𝑖(x) .The scalar product 〈𝜓𝑖 , 𝜌𝑡〉 represents the overlap of the starting 

density 𝜌𝑡  with 𝑖𝑡ℎ  eigenfunction. It determines the amplitude by which the eigenfunction 
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contributes to the dynamics.  The contributions of all basis function 𝜙𝑖 to the probability density 

𝜌𝑡+𝜏 decrease with time. After infinite time 𝜏 →∞ only the first term with 𝑡1 =∞ is left and the 

stationary density is reached: lim
𝜏→∞

𝒫(𝜏)𝜌𝑡 = ϕ1 = 𝜇. 

At large times, the dynamics will be governed by m largest timescales. So, we are 

interested just in slowest timescales with 𝜏 ≫ 𝑡𝑚+1. At these timescales all the kinetic properties 

and stationary distributions can be accurately approximated when only the dominant m 

eigenvalues and eigenvectors are used [66]: 

𝜌𝑡+𝜏 = 𝒫(𝜏)𝜌𝑡 ≈ ∑ 𝑒−𝜏 𝑡𝑖⁄ 〈𝜓𝑖 , 𝜌𝑡〉𝜙𝑖

𝑚

𝑖=1

 
(2.7) 

2.1.2. Approximation of slowest timescales and the related eigenfunctions: 

From Eq.(2.6) the time autocorrelation function of some function of molecular configuration 

𝑓(x) as a function of 𝜏 is given by: 

〈𝑓(x𝑡)𝑓(x𝑡+𝜏)〉𝑖 = ∑ 𝑒−𝜏 𝑡𝑖⁄ 〈𝜙𝑖 , 𝑓〉2

∞

𝑖=1

 
(2.8) 

Since the two eigenfunctions 𝜓𝑖(x)  and 𝜙𝑖(x)  are interchangeable, we can use the time 

autocorrelation function of the eigenfunction 𝜓𝑖(x)  to yield the exact 𝑖𝑡ℎ eigenvalue [67], and 

thus permit us to get the exact 𝑖𝑡ℎ timescale: 

𝜆̂𝑖(𝜏) = 〈𝜓𝑖(x𝑡)𝜓𝑖(x𝑡+𝜏)〉𝑖 = 𝑒−𝜏 𝑡𝑖⁄    (2.9) 

𝑡̂𝑖 = −
𝜏

𝑙𝑛|𝜆̂𝑖(𝜏)|
= 𝑡𝑖 

(2.10) 
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In practice, we cannot know the exact eigenfunctions 𝜓𝑖(x).Hence, the variational principle of 

conformation dynamics [67] can be used to construct a model function for 𝜓𝑖(x) such that the 

normalized time-autocorrelation function ( 𝜓̂𝑖 (x) ) approximates the true eigenvalues and 

timescales 

〈𝜓̂𝑖(x𝑡)𝜓̂𝑖(x𝑡+𝜏)〉 ≤ 𝑒−𝜏 𝑡𝑖⁄  (2.11) 

and  

𝑡̂𝑖 ≤ 𝑡𝑖 (2.12) 

Therefore, we must look for a function 𝜓̂𝑖 that has the maximum timescale 𝑡𝑖 for finding the best 

approximation of the 𝑖𝑡ℎ timescale and its associated eigenfunction. All of the first m timescales 

will however be underestimated when the Markov model is used to approximate the slowest 

processes. It was shown [68, 69] that the estimation error becomes smaller when 𝜏 is increased. 

As a result, when plotting the estimated timescales 𝑡̂𝑖(𝜏) as a function of 𝜏 one obtains the well-

known implied timescale, where the estimated timescales 𝑡̂𝑖(𝜏) slowly converge to the true 

timescale as 𝜏 is increased. 

 

2.1.3. Best approximation of the eigenfunctions 

To approximate the eigenfunctions 𝜓𝑖  by a functions 𝜓̂𝑖 that is a linear combination of basis 

functions (𝜒𝑘) which must be a priori defined by 

𝜓̂𝑖(x) = ∑ 𝑏𝑖𝑘𝜒𝑘(x)

𝑛

𝑘=1

 
(2.13) 
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The problem is to find the optimal parameters 𝑏𝑖𝑘 that will be denoted by a vector 𝒃𝑖 ∈  ℝ𝑛.The 

coefficients 𝒃𝑖 will give us the optimal approximation of the eigenvalues and its corresponding 

timescales. We aim to get the optimal set of coefficients for an orthogonal basis set that requires 

them to be uncorrelated at lag-time 0: 

𝑐𝑖𝑗
𝜒(0) = 〈𝜒𝑖 , 𝜒𝑗〉𝜇 = 〈𝜒𝑖(x𝑡)𝜒𝑗(x𝑡)〉𝑡 = 𝛿𝑖𝑗 (2.14) 

If the covariance matrix at lag-time 𝜏 between functions is defined by  

𝑐𝑖𝑗
𝜒

= 〈𝜒𝑖(x𝑡)𝜒𝑗(x𝑡+𝜏)〉𝑡 (2.15) 

then the eigenvector bi gives us the optimal set of the coefficient 

𝐶𝜒(𝜏)𝑏𝑖 = 𝑏𝑖𝜆̂𝑖(𝜏) (2.16) 

For the more general case of a non-orthonormal basis set, the optimal approximation to the exact 

eigenvalues and eigenfunctions is obtained by solving the generalized eigenvalue problem:  

𝐶𝜒(𝜏)𝑏𝑖 = 𝐶𝜒(0)𝑏𝑖𝜆̂𝑖(𝜏) (2.17) 

The two equations Eq.(2.16) and Eq.(2.17) are known from variational calculus. To get the 

optimal approximation of exact eigenfunctions we need to solve Eq.(2.17) with correlation 

matrix for lag- time 0 (principal component analysis) and 𝜏  (Time-lagged independent 

component analysis) that will provide us with the linear combination of order parameters. You 

need to make clear that PCA and TICA give two different results. They are not complementary, 

are they?  
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2.2. Dimension reduction and discretization 

2.2.1. Principal component analysis (PCA) 

MD usually utilizes principal component analysis to identify a linear subspace in which the large 

amplitude motions. PCA transforms linearly the coordinates provided that their instantaneous 

correlation vanishes [70, 71]. 

.The elements of the covariance matrix 𝑪𝒓 of the order parameter 𝒓 is defined by  

𝑐𝑖𝑗
𝑟 (0) = 〈𝑟𝑖𝑟𝑗〉 (2.18) 

PCA transforms the data into orthogonal basis, where the new coordinates are uncorrelated for 

𝑖 ≠ 𝑗 .The principle eigenvectors 𝑤𝑖 can be obtained by solving the eigenvalue problem:  

𝐶𝑟𝑤𝑖 = 𝑤𝑖𝜎𝑖
2 (2.19) 

or in matrix form                                                                

𝐶𝑟𝑊 = 𝑊𝛴2 (2.20) 

where 𝑊 = [𝑤1, … , 𝑤𝑑]  is the eigenvector matrix and 𝛴2 = 𝑑𝑖𝑎𝑔(𝜎1
2, … , 𝜎𝑑

2)  is the variance 

matrix. The eigenvalues of the matrix measure the variance of the data along the principal 

direction, while the eigenvectors are used to transform an original coordinate vector 𝒓  into 

principal components:  

𝑦𝑇 = 𝑟𝑇𝑊 (2.21) 
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If the variance 𝜎𝑖
2 is decay quickly with 𝑖, one often selects a threshold and ignores all PCs with 

smaller 𝜎𝑖
2. PCA used as dimension reduction tool by using the first 𝑚 dominant column vectors 

of W. The fraction of variance of dimension reduction is  

𝑉𝑑 =
∑ 𝜎𝑖

2𝑚
𝑖=1

𝑇𝑉
 

(2.22) 

where TV is the total variance: 𝑇𝑉 = ∑ 𝜎𝑖
2𝑑

𝑖=1 .   

2.2.2. Time-lagged independent component analysis (TICA) 

TICA [72] applies a linear transformation to the order parameter. It is an optimal method to 

detect the slow reaction coordinates and their relaxation timescales. TICA uses a time-lagged 

covariance matrix 𝑪𝑟(𝜏) to get a new set of order parameter that are uncorrelated and their 

autocovariances at a fixed lag-time τ are maximum. 

𝑐𝑖𝑗
𝑟 (𝜏) = 〈𝑟𝑖(𝑡)𝑟𝑗(𝑡 + 𝜏)〉 (2.23) 

To get uncorrelated independent component 𝑪𝑟(0)  diagonalized by transformation matrix 𝑼 =

[𝒖1, … , 𝒖𝑑], and maximizes the autocorrelations 𝑐𝑖𝑖
𝑧(𝜏) = 𝒖𝑖

𝑇𝑪𝑟(𝜏)𝒖𝑖 for every column 𝒖𝑖 of U. 

One then solves the generalized eigenvalue problem: 

𝑪𝑟(𝜏)𝒖𝑖 = 𝑪𝑟(0)𝒖𝑖𝜆̂𝑖(𝜏) (2.24) 

The independent components 𝒚(𝑡) are then obtained from the original coordinate vector 𝒓(𝑡) as 

follows   

𝒚𝑇 = 𝑟𝑇𝑈 (2.25) 
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The new order parameter or independent component with largest autocovariances 𝜆̂𝑖(𝜏)  will be 

called dominant. If we have 𝑚  dominant IC’s which describe most of slow processes, the 

fraction of the kinetic variance retained by the dimension reduction is   

𝑐𝑚 =
∑ 𝜆𝑖

2(𝜏)𝑚
𝑖=2

𝑇𝐾𝑉
 

(2.26) 

where the total kinetic variance is  

𝑇𝐾𝑉 = ∑ 𝜆𝑖
2(𝜏)

𝑑

𝑖=2
 

(2.27) 

The squared eigenvalues 𝜆𝑖
2 are in the range [0, 1], where values near 1 are for slow processes 

and value near are 0 for fast processes. This means that TKV measures the number of slow 

processes found in the data.   

2.2.3. Discretization of state space  

In Markov models a step-function basis is chosen to build it. This gives an optimal step-function 

approximation to the eigenfunctions and maximal eigenvalues amongst all choices of functions 

that can be supported by the clustering. Markov models assigning every configuration (𝑥 ) 

uniquely to one of the geometric clusters that will be used to construct the model. It can be 

shown [73] that this operation is equivalent to using basis functions. The discretization of state 

space Ω into 𝑛 sets  𝑆 = {𝑆1, … , 𝑆𝑛} which entirely partition the state space and have no overlap. 

The probability of a point 𝑥 to belong to set 𝑖 is found by a membership function 𝜒𝑖(x) with the 

property ∑ 𝜒𝑖(x)𝑛
𝑖=1 = 1. The state space is partitioned using crisp partition with step functions: 

𝜒𝑖(x) = {
1    x ∈ 𝑆𝑖

0    x ∉ 𝑆𝑖
 

(2.28) 
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Each basis function 𝜒𝑖  is a step function which has a constant value for all configurations 

belonging to the 𝑖𝑡ℎ cluster and is zero elsewhere. The crisp partition considers 𝑛 centers x̅𝑖, 𝑖 =

1, … , 𝑛, and set 𝑆𝑖 defines as all the point x ∈ 𝑆𝑖 that are closer to x̅𝑖 more than any other center 

[74]. This basis is an orthonormal basis set where  

〈𝜒𝑖 , 𝜒𝑗〉𝜇 =
1

𝜋𝑖
∫ 𝜇(x)𝑑x

.

x∈𝑆𝑖

= 𝛿𝑖𝑗 
(2.29) 

The stationary probability 𝜋𝑖 to be in set 𝑖 according to the full stationary density given as: 

𝜋𝑖 = ∫ 𝜇(x)𝑑x
.

x∈𝑆𝑖

 
(2.30) 

and the local stationary density 𝜇𝑖(x) restricted to set 𝑖 is  

𝜇𝑖(x) = {

𝜇(𝑥)

𝜋𝑖
    x ∈ 𝑆𝑖

0            x ∉ 𝑆𝑖

 

(2.31) 

 where the local partition of state space does not require information about the full state space. 

2.3. Transition matrix  

Markov models require defining transition matrix elements 𝑇𝑖𝑗(𝜏) that give the probability of 

finding the system in state 𝑗 at time 𝑡 + 𝜏 starting in state 𝑖 at time 𝑡 [69, 75].  

𝑇𝑖𝑗(𝜏) = ℙ[x(𝑡 + 𝜏) ∈ 𝑆𝑗|x(𝑡) ∈ 𝑆𝑖] (2.32) 

=
ℙ[x(𝑡 + 𝜏) ∈ 𝑆𝑗 ∩  x(𝑡) ∈ 𝑆𝑖]

ℙ[x(𝑡) ∈ 𝑆𝑖]
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=
∫ 𝜇

𝑖
(x)𝑝(x, 𝑆𝑗; 𝜏)𝑑x

.

x∈𝑆𝑖

∫ 𝜇
𝑖
(x)𝑑x

.

x∈𝑆𝑖

 

 

We have to integrate over local equilibrium sets 𝜇𝑖(x) as a weight to obtain the transition matrix, 

which facilitates the estimation of the transition probabilities. This approach does not require any 

information about the global equilibrium of the system and just gives the dynamic information 

over time period 𝜏. The transition matrix is also related to the correlation function by    

𝑇𝑖𝑗(𝜏) =
𝔼𝑡[𝜒𝑖(x𝑡)𝜒𝑗(x𝑡+𝜏)]

𝔼𝑡[𝜒𝑖(x𝑡)]
=

𝑐𝑖𝑗
𝑐𝑜𝑟𝑟

𝜋𝑖
 

 (2.33) 

The probability density of the system of state 𝑗 at time 𝑡 + 𝜏 will be given by the P should be a 

rho to be consistent 

𝑝𝑗(𝑡 + 𝜏) = ∑ 𝑝𝑖(𝑡)𝑇𝑖𝑗(𝜏)

𝑛

𝑖=1

 
(2.34) 

or in matrix notation 

𝑷𝑇(𝑡 + 𝜏) = 𝑷𝑇(𝑡)𝑻(𝜏) (2.35) 

The stationary probability of the transition matrix T for any time 𝜏 corresponds to the highest 

eigenvalue of norm 1.  it is given by  

𝜋𝑇 = 𝜋𝑇𝑻(𝜏) (2.36) 

Markov models use 𝑻(𝜏)  to predicate the probability distribution of long-time dynamics of 

discretized space for later times 𝑡 + 𝑘𝜏 as 
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𝑷𝑇(𝑡 + 𝑘𝜏) ≈ 𝑷𝑇(𝑡)𝑻𝑘(𝜏) (2.37) 

2.4. Estimation of Markov state models 

2.4.1. Count matrix  

Based on that the simulation data is saved at a fixed time interval, a count method is used to 

sample the trajectory at lag-time 𝜏 and estimate the transition matrix. If the trajectory is saved the 

data of the configuration every fixed time interval ∆t for N times [69]: 

X = [x1 = x(t = 0), x2 = x(t = ∆t), … , xN = x(t = (N − 1)∆t)] (2.38) 

where every structure is assigned to one discrete state. The discrete count matrix 𝑪𝑜𝑏𝑠(𝜏) can be 

defined at lag-time 𝜏 that must be an integer multiple of the time interval ∆𝑡, where 𝑐𝑖𝑗
𝑜𝑏𝑠(𝜏) is 

the total number overall times t of times the trajectory was observed in state 𝑖 at time 𝑡 and in 

state 𝑗 at time 𝑡 + 𝜏: 

𝑐𝑖𝑗
𝑜𝑏𝑠(𝜏) = 𝑐𝑖𝑗

𝑜𝑏𝑠(𝑙∆𝑡) = ∑ 𝜒𝑖(x𝑘)

𝑁−𝑙

𝑘=1

𝜒𝑗(x𝑘+𝑙) 

(2.39) 

The count matrix considers as the estimator of the correlation function in eq.(2.32) by     

𝑐̂𝑖𝑗
𝑐𝑜𝑟𝑟(𝜏) =

𝑐𝑖𝑗
𝑜𝑏𝑠(𝜏)

𝑁 − 𝑙
 

(2.40) 

The total number of times the trajectory was in state 𝑖 can be defined as a row sum of the count 

matrix as: 

𝑐𝑖
𝑜𝑏𝑠 = 𝑐𝑖

𝑜𝑏𝑠(𝜏) ≔ ∑ 𝑐𝑖𝑘
𝑜𝑏𝑠

𝑛

𝑘=1

 
(2.41) 
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2.4. 2. Likelihood and Bayesian estimators 

The transition matrix in the limit of infinitely long trajectory can be expressed in term of the 

count matrix as the fraction of times the transition from state 𝑖 to state 𝑗 led out of state 𝑖 [69].  

𝑇̂𝑖𝑗(𝜏) =  
𝑐𝑖𝑗

𝑜𝑏𝑠(𝜏)

𝑐𝑖
𝑜𝑏𝑠(𝜏)

 
(2.42) 

However, the transition matrix 𝑻(𝜏) for limited length trajectory is not uniquely determined. All 

the observed data must be statistically independent or uncorrelated counts when jump process is 

Markovian at lag-time 𝜏.  Assuming that count matrix elements are statistically independent. The 

likelihood probability that a particular 𝑻(𝜏) would generate a sequence 𝑠1, … , 𝑠𝑛  the observed 

trajectory is given by the product of the individual jump probabilities asthis sentence is too long 

and unclear:   

𝑝(𝐶𝑜𝑏𝑠|𝑇) = ∏ 𝑇
𝑖𝑗

𝑐𝑖𝑗
𝑜𝑏𝑠

𝑛

𝑖.𝑗=1

 
(2.43) 

In a Bayesian approach, the posterior probability of the transition matrix being 𝑻(𝜏) is   

𝑝(𝑇|𝐶𝑜𝑏𝑠) ∝ 𝑝(𝑇)𝑝(𝐶𝑜𝑏𝑠|𝑇) = 𝑝(𝑇) ∏ 𝑇
𝑖𝑗

𝑐𝑖𝑗
𝑜𝑏𝑠

𝑛

𝑖.𝑗=1

 
(2.44) 

where 𝑝(𝑻) is the prior probability of transition matrices before observing any data. The two 

approaches can be used for MD simulations. But, Bayesian estimation is usually used for 

estimating reversible Markov models [76] where 𝑻(𝜏)  for MD in equilibrium should obey 

detailed balanced  
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𝜋𝑖𝑇𝑖𝑗 = 𝜋𝑗𝑇𝑗𝑖 (2.45) 

While for nonreversible estimation transition matrix with ∑ 𝑇𝑖𝑗𝑗 = 1  and 𝑇𝑖𝑗 ≥ 0  maximum 

likelihood estimator is analytically available.    

2.5. Kinetic model validation: Chapman-Kolmogorov test  

Obtaining a good kinetic model that describes the true dynamics of the system depends on the 

choice of appropriate lag-time 𝜏, and discretization that minimizes the discretization errors of the 

Markov state model. Chapman-Kolmogorov(CK) test [69] can test if the transition matrix 𝑻̂(𝜏) is 

approximately Markovian. The CK test with statistical errors for Markovian matrix is  

[𝑻̂(𝜏)]
𝑘

≈ 𝑻̂(𝑘𝜏) (2.46) 

The test compares the MSM transition probability estimated at lag-time 𝑘𝜏, where 𝑘 is an integer 

larger than one with the estimated MSM transition probability matrix to the power 𝑘𝑡ℎ. The test 

can be done by comparing the probability for few observables when starting from stationary 

distributions restricted to set of states A at later time 𝑘𝜏. The stationary probability for a set of 

states A is  

𝑤𝑖
𝐴 = {

𝜋𝑖

∑ 𝜋𝑗𝑗∈𝐴
       𝑖 ∈ 𝐴

  0                𝑖 ∉ 𝐴

 

(2.47) 

The probability to be at set A after 𝑘𝜏 with starting distribution 𝒘𝐴 according to Markov model 

is given by  

𝑝𝑀𝑆𝑀(𝐴, 𝐴; 𝑘𝜏) = ∑[(𝒘𝐴)𝑇𝑻𝑘(𝜏)]𝑖

𝑖∈𝐴

 
(2.48) 
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where 𝑝(𝐴, 𝐴; 𝑘𝜏) is the probability to be at set A at later time 𝑘𝜏 started from the set A at time 𝑡. 

Validation of the Markov model requires us to compare the MSM probability with probability 

obtained from the trajectory data within statistical errors: 

𝑝𝑀𝐷(𝐴, 𝐴; 𝑘𝜏) = 𝑝𝑀𝑆𝑀(𝐴, 𝐴; 𝑘𝜏) (2.49) 

where 𝑝𝑀𝐷(𝐴, 𝐴; 𝑘𝜏) is the estimated transition probability to be at set A after 𝑘𝜏 with starting 

distribution 𝒘𝐴 according to trajectory data is given by  

𝑝𝑀𝐷(𝐴, 𝐴; 𝑘𝜏) = ∑ 𝑤𝑖
𝐴𝑝𝑀𝐷(𝑖, 𝐴; 𝑘𝜏)

𝑖∈𝐴

 
(2.50) 

The probability 𝑝𝑀𝐷(𝑖, 𝐴; 𝑘𝜏) is given by   

𝑝𝑀𝐷(𝑖, 𝐴; 𝑘𝜏) =
∑ 𝑐𝑖𝑗

𝑜𝑏𝑠
𝑗∈𝐴 (𝑘𝜏)

∑ 𝑐𝑖𝑗
𝑜𝑏𝑠(𝑘𝜏)𝑛

𝑗=1

 
(2.51) 

and the statistical errors of 𝑝𝑀𝐷(𝐴, 𝐴; 𝑘𝜏) is given by  

𝜖𝑀𝐷(𝐴, 𝐴; 𝑘𝜏) = √𝑘
𝑝𝑀𝐷(𝐴, 𝐴; 𝑘𝜏) − [𝑝𝑀𝐷(𝐴, 𝐴; 𝑘𝜏)]2

∑ ∑ 𝑐𝑖𝑗
𝑜𝑏𝑠(𝑘𝜏)𝑛

𝑗=1𝑖∈𝐴

 

(2.52) 

2.6. Transition path theory 

Transition path theory (TPT) [77, 78] is used to estimate the probability of the transition pathway 

(fluxes). We define a start state as A, and a final state as B and other intermediate states as I. The 

forward committer 𝑞𝑖
+is defined as the probability, when being at state I, that the system will 

reach the state B before A, can be estimated by solving the equations:  



22 
 

𝑞𝑖
+ − ∑ 𝑇𝑖𝑗𝑞𝑖

+

𝑗∈𝐼

= ∑ 𝑇𝑖𝑗

𝑗∈𝐵

  (2.53) 

Also, the probability of backward transition is computed as: 

𝑞𝑖
− = 1 − 𝑞𝑖

+ (2.54) 

The average number of transitions of the different pathways from 𝑖 to 𝑗 as part of the transition 

from A to B is defined as 

𝑓𝑖𝑗 = 𝜋𝑖𝑞𝑖
−𝑇𝑖𝑗𝑞𝑖

+ (2.55) 

The net fluxes 𝑓𝑖𝑗
+ can be computed using eq.(2.56): 

𝑓𝑖𝑗
+ = 𝑚𝑎𝑥(0, 𝑓𝑖𝑗 − 𝑓𝑗𝑖) (2.56) 

 2.7. Summary  

We briefly introduced MSM building from MD data (Figure 2.1). The first step is to define the 

input coordinates (feature) which can be used to characterize the MD trajectory. For example, 

one can choose cartesian coordinates, dihedral angles or contact of distant pairs. The next step is 

the dimension reduction using TICA to transform the feature into a set of slowest coordinates 

that can identify the slowest process in the MD data. The TICA output is then clustered into a set 

of microstates using a clustering algorithm such as K-means clustering which assigned each 

frame of the trajectory to one microstate  [79].  At this stage, we can estimate MSM from the 

discretized trajectories of the microstate by approximating the transition probability matrix at 

specified lag-time. Next, one can validate that the system as memory-less after a specified lag-

time by calculating implied timescales that are independent of lag-time. To get a simple picture 

of the system dynamic with few states that contain important information such as structural and 
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kinetic information. To do this the Perron-cluster cluster analysis (PCCA++) method [80] can 

use to assign the microstates into macrostates ( metastable states). In addition, we can apply 

Chapman-Kolmogorov test to check that our system is Markovian. If the system is valid we can 

apply TPT to compute the transitions probability among metastable states.  

 

Figure 2.1: Flowchart for building MSMs. 
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CHAPTER 3: MATERIAL AND METHODS 

We simulated the GTP-bound catalytic domain of G12D K-Ras and its phosphorylated mutant 

(pTyr32) to investigate the effects of Tyr32 phosphorylation on the conformational states of K-

Ras. We also identified metastable conformational states and the kinetic network of transitions 

between them using Markov state model (MSM). 

3.1. Initial structures and system preparation 

The starting structure was downloaded from the RCSB protein data bank (PDB ID: 4DSO). 

Since no high-resolution crystal structure was available for the phosphorylated Tyr32, we used 

4DSO structure to generate the initial configuration by mutating Tye32 to pTyr32.  

 In both cases, we replaced GSP with GTP molecule and removed all molecules in the 

PDB file except for water molecules and Mg+2 ions. The C-terminus and anionic residues were 

deprotonated while the N-terminus and cationic residues were protonated assuming neutral pH. 

The resulting structure was placed in a cubic box containing TIP3P water molecules, and Na+ 

and Cl- ions were added to neutralize the system and achieve an ionic strength of 150 mM. A 

minimum of 10 Å buffer between the edges of the box and protein atoms was used to ensure that 

the protein does not interact with its periodic images (Figure 3.1).  
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Figure 3.1: A snapshot from one of the simulations. The catalytic domain is in cartoon colored in dark grey and 

switches SI (residues 25-40) and SII (residues 60-75) are in red. Magnesium, sodium and chloride ions as shown in 

blue, yellow and green spheres, respectively. The bound GTP is in purple sticks. 

 

3.2. Molecular dynamics simulation setup 

Short-range van der Waals interactions were smoothly switched off between 10 Å and 12 Å, with 

a 14 Å cutoff used for non-bonded pair list updates. Long-range electrostatic interactions were 

computed using the Particle Mesh Ewald (PME) method [81] with a grid density of about one 

grid point per Å. The solvated systems were energy minimized (5000 steps of conjugate 



26 
 

gradient), gradually heated keeping the C and GTP heavy atoms restrained by a harmonic 

restraint of force constant 𝑘 = 4 𝑘𝑐𝑎𝑙 𝑚𝑜𝑙−1Å−2, and equilibrated with 𝑘 progressively reduced 

to zero by decrements of 1 𝑘𝑐𝑎𝑙 𝑚𝑜𝑙−1Å−2 every 100 ps. An integration time step of 2 fs was 

used with the SHAKE [82] algorithm applied to covalent bonds involving hydrogen atoms. The 

isothermal-isobaric (NPT) ensemble and periodic boundary conditions were used. The 

temperature was maintained at the physiologic value of 310K using Langevin dynamics with a 

damping coefficient of 10 ps-1. The Nose-Hoover Langevin piston method was used with a 

piston period of 200 fs and decay time interval of 100 fs to maintain constant pressure at 1.0 atm. 

Each system was simulated for 500 ns with NAMD2.11 [83] using the CHARMM27 empirical 

force field and CMAP dihedral angle correction [51]. 

 

3.3. Building Markov state models and their validation 

Markov state model(MSMs) [66, 69] were built from MD simulations using PyEMMA software 

package version 2 [60].  Multiple definitions of microstates were tested. We found that the 

distances among C coordinates of residues 12, 32, 34, 36, 48, 56, 59, 63, 66 ,67 , 74, 105, 108, 

122, 126, 138, 148 and 153 are sufficient to resolve protein conformational changes observed in 

the two trajectories. This is because the aforementioned residues have a relatively higher 

dynamical nature as quantified from root mean square displacement calculations. Time-lagged 

independent component (TICA) [72] with 1 ns as a lag-time was also used to find the slow linear 

subspace of the input coordinates (Figure 3.2) and subsequent dimension reduction by projecting 

on the two slowest TICA components. 
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Figure 3.2: Projection of the trajectories onto the two largest independent components. Projection of the 

trajectory onto the two largest independent components subset estimated by TICA. Gray lines represent data 

sampled every 100 ps while thick black lines represent 10 ns running averages. 

 

K-means clustering [79] was utilized to get a set of 100 microstates represented by cluster 

centers (Figure 3.3).  

Figure 3.3: Clustering the trajectory into microstate. The trajectory is assigned to the 100 cluster centers using k-

means clustering. (A) for pTyr32-G12D and (B) G12D K-Ras. 
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The resulting discretized trajectories were used to construct the Bayesian MSM using 2 ns lag-

time for which the system is considered Markovian (i.e. timescales become and independent of 

the lag time itself, see Figure 3.4). 

 

Figure 3.4: Validation of Markov state model.  Implied relaxation timescales for the first six eigenvalues 

calculated from the transition matrix at different lag times. All relaxation timescales become approximately constant 

beyond the used lag-time 2 ns to construct MSMs for (A) G12D and (B) pTyr32-G12D. 

 

Spectral analysis of timescale separations shows that the largest timescale separation is between 

the first and the second relaxation timescales for G12D, and third and fourth relaxation 

timescales for pTyr32-G12D, respectively (Figure 3.5). 
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Figure 3.5: The Spectral analysis of timescale separation. The Spectral analysis revealed the largest timescale 

separation is between the first and the second relaxation timescales for G12D, and third and fourth relaxation 

timescales for pTyr32-G12D, respectively.  

 

 This suggests that retaining four relaxation times or five metastable states is sufficient to coarse-

graining the dynamics of both systems. Thus, the microstates were then grouped into five 

metastable states using the Perron-cluster cluster analysis (PCCA++) method [80]. The free 

energy of each metastable state was computed by comparing the probabilities of its constituent 

microstates. The Chapman-Kolmogorov test [69] was employed to further validate the reliability 

of both five metastable state Markov state models. As shown in Figure 3.6, the probability 

predicted from MSMs for a given metastable state has small deviations from the probability 

counts from MD simulations. Finally, Transition path theory [78, 84] was utilized to compute the 

transition path fluxes among metastable states using the forward committer probabilities because 

MSM here is reversible. 
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Figure 3.6: The Chapman-Kolmogorov test. The Chapman-Kolmogorov test for MSMs for (A) pTyr32-G12D and 

(B) G12D with the five states. The data for MSM (black line) and the MDs trajectory (blue dotted line, with 

estimated error).  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1. Effects of Tyr32 phosphorylation on structure and dynamics of G12D K-

Ras. 

To investigate the effects of Tyr32 phosphorylation, we calculated the root mean square 

fluctuations (RMSF). RMSF of a dynamical particle is a measure of the deviation between its 

position and some reference position: 

𝑅𝑀𝑆𝐹 =  √
1

𝑇
∑ |𝑟(𝑡𝑗) − 𝑟𝑟𝑒𝑓|

2
𝑁

𝑡𝑗=1

 

(4.1) 

where 𝑇 is the simulation time and 𝑟(𝑡) is the position of the particle at time 𝑡 and 𝑟𝑟𝑒𝑓 is the 

reference position of the particle. The reference position is usually taken to be the average 

position of the particle.  

RMSFs are typically linked to the stability and mobility of protein structures. Therefore, 

we carried out RMSFs calculations on G12D K-Ras protein and it phosphorylated variant 

trajectories as shown in Figure 4.1.  The RMSF of each residue reveals the mobility of various 

parts of the protein and the effect of phosphorylation on the mobility of the G12D K-Ras. The 

effects of Tyr32 phosphorylation appear clearly in the flexibility of SI and SII. SI shows more 

flexibility in pTyr32-G12D than G12D K-Ras. This is because the Tyr32 phosphorylated among 

SI, but SII shows reduction in the flexibility in pTyr32-G12D than G12D K-Ras. Furthermore, 

the flexibility of helix α3  region (residues 87−104) is increased in the case of Tyr32 

phosphorylation. 
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Figure 4.1: 𝑪 root mean square fluctuation (RMSF). RMSF calculated after alignment excluding SI and SII 

regions for both G12D K-Ras (black) and its phosphorylated variant (red). SI and SII are highlighted by cyan and 

purple shadows, respectively. 

  

RMSD is a measure of how similar two conformations of a protein are. It is calculated 

using 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑|𝑟𝑖(𝑡) − 𝑟𝑖

𝑟𝑒𝑓
|

2
𝑁

𝑖=1

 

(4.2) 

where N is the number of atoms whose positions are being compared.  𝑟𝑖(𝑡) is the position of the 

i-th atom at time 𝑡, while  𝑟𝑖
𝑟𝑒𝑓

 is the corresponding reference position of the same atom.  

To further study the conformational dynamics of both mutants, we also calculated the 

root mean square deviation (RMSD) of their backbone atoms. The results of these RMSD 
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calculations are   shown in Figure 4.2. The structures are very stable for both mutants. The 

RMSDs of the backbone from the initial X-ray structure is between 0.8 and 1.5 Å for both G12D 

K-Ras and its phosphorylated variant.  

 

 

Figure 4.2: Time evolution of root-mean square deviation (RMSD). RMSD values of backbone (BB), Switch 1 

(SI) and Switch 2 (SII) structures sampled from the initial X-Ray structure for both G12D K-Ras and its 

phosphorylated variant. RMSDs were calculated after structural alignment excluding the flexible switch regions. 

Gray lines represent data sampled every 100 ps while thick black lines represent 10 ns running averages. 

 

Nonetheless, the two switches show different dynamical behavior. In particular, SI has the 

average RMSD of G12D K-Ras between 0.9 and 2.9 Å, while its phosphorylated variant has it 

between 1.1 and 3.2 Å. Similarly, the RMSD of SII is 1.1-2.8 Å and 1.4- 2.2 Å for G12D and  

pTyr-G12D, respectively. Overall, Tyr32 phosphorylation of G12D K-Ras do not induce severe 

structural changes but it increased the flexibility of SI and the decreased flexibility of SII and 

helix 3. 
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The changing of the flexibility of helix 3 and SII encouraged us to investigate the relation 

between these two neighboring regions. For G12D K-Ras, helix 3 is shifted toward SII due to 

sidechain interactions between helix 3  and SII. Namely, presence of many transient hydrogen 

bonds with the polar and charged residues between (ARG68:NH1-TYR96:OH), (ARG73:N-

VAL103:HG1) and (GLY75:O-LYS104:HZ2) was observed. This explains the differential 

flexibility of SII and 3 regions between the two proteins and communications between their 

two lobes (lobe 1: residues 1–86 and lobe 2: residues 87–171). It is also consistent with having 

functional significance as suggested previously when correlated motions observed between helix 

3 and helix 2 regions in GTP-bound Ras simulations [85]. 

The GTP binding pocket of Ras is strongly positively charged which stabilized by the 

negatively charged phosphates of GTP. The important role of Tyr32 on SI in intrinsic hydrolysis 

is to coordinate a water molecule adjacent to 𝛾-phosphates of GTP which bridged to a hydroxyl 

group of Tyr32 [86, 87].  Insertion of polar and negatively charged phosphate group at Tyr32 

may alert the charge distribution or cause some reordering of the solvent. The conformational 

differences of SI are directly altered by Tyr32 phosphorylation that induces the electrostatic 

repulsion between the negatively charged carboxyl groups between proximal residues Asp38 and 

Asp57 (Figure 4.3) consistent with early results from biophysical experiments [31].  

Tyr32 is found in the middle of Ras effector binding site.  Its motion is coupled with the 

movement of four adjacent negatively charged residues in the SI region (Glu31, Asp33, Glu37, 

and Asp38) which play a critical role in Raf binding. This alteration of SI confirmation illustrates 

the reduction of the affinity of Ras to its effector proteins [88, 89]. Moreover, Tyr32 

phosphorylation may be affecting Ras-GAP interactions. A previous study revealed that mutation 

of negatively charged residues in SI region affect the electrostatic interaction between the Ras 
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and GAP and that lead to reduce their affinity to each other [13]. SII displays complicated 

dynamic interactions with its effectors. Hence, the decreased local flexibility observed in the SII 

of pTyr-G12D could significantly affect the role of SII in the binding and activation of its 

effectors through disordering contacts with the effectors in regions outside the Ras effectors 

binding domain [21, 90]. 

 

Figure 4.3: The time evolution of distance between the C atoms of the residues Asp38 an Asp57 of both mutants 

G12D K-Ras (black) and its phosphorylated variant (red). 

 

4.2. Analysis of side chain torsions  

The side chain of Tyr32 is located across the nucleotide binding site in the GTP bound form. It 

has been also shown that the specific orientation of Tyr32 affects the GTP hydrolysis. The 

phosphorylation of Tyr32 affects the side chain reorientation of Tyr32 as it shows different 

behavior for both mutants. A large change in the orientation of the side-chain of Tyr32 was 
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observed as characterized by the dihedral angle 𝜒1  (N-Cα-Cβ-Cγ). Each mutation exhibits 

distinguishable states (Figure 4.4). These variations in Tyr32 sidechain orientation are likely to 

contribute to changes in SI conformations and dynamics. Therefore, that may have a functional 

significance since Tyr32 undergoes a reorientation through nucleotide exchange [91, 92].  

 

Figure 4.4: The probability of the dihedral angle 𝝌𝟏(N-Cα-Cβ-Cγ) of Tyr32 for G12D K-Ras (black) and its 

phosphorylated variant (red). 

 

4.3. Principal component analysis 

To gain better insight into the phosphorylation effects on the global dynamics and find the most 

significant large scale motions, we used principal component analysis [71]. We defined the two 

largest principal components of MD trajectories obtained from analyzing them for the selected 

atoms. Figure 4.5 highlights the differences between the two mutants as both seem to occupy 

distinct and mutual conformational states. It also shows that the profiles of both mutants large-

scale motions are distinct. The phosphorylated variant sampled a larger conformational space 
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than the unphosphorylated one, indicating that the phosphorylated variant is more dynamic. This 

can be related to the observed fluctuations along PC1 due to large fluctuations of SI for the 

phosphorylated variant. 

 

Figure 4.5: Global conformational dynamics of mutants G12D K-Ras and its phosphorylated variant. 
Projection of simulated trajectories into the first and the second principal components of mutants G12D K-Ras 

(black) and its phosphorylated variant (red). 

 

4.4. GTP binding site configuration  

Previous [93] P-NMR spectroscopic studies of wild-type H-Ras catalytic domain bound to 

guanosine 5`-(β, γ -imido) triphosphate (GppNHp) found a slow chemical shift changes for the 

values of the nucleotide phosphorus atoms of the α-, β-, and γ-phosphates showed that H-

Ras−GppNHp exists in two distinct conformational states, inactive state 1 and active state 2 [94, 

95]. The two states determined the stability of SI and SII by the interaction of the two residues 

T35 and G60 in switch regions with γ-phosphate in GTP. The two-states are different among Ras 

mutations, they are associated with different biochemical interactions. Inactive state 1 contains 
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three substates described by the loss of interaction of T35 or G60 with γ-phosphate this state 

favors nucleotide exchange while inhibiting the interaction with effector protein. However, 

active state 2 contain described by the interaction of T35 or G60 with γ-phosphate this state is 

associated with effector binding and GTP hydrolysis [96, 97]. A previous study showed that the 

G12D mutation shifts conformations to the active state 2 which have a larger connection with 

nucleotide binding site [32]. Understanding the effects of TYR32 phosphorylation at protein–

GTP interactions is important because these interactions can affect rates of nucleotide exchange 

and GTPase activity. The State 2 which delineate by the interactions of T35 and G60 with GTP it 

is very similar for both mutations. The average G60:N-GTP:Oγ2 and T35:Oη-GTP:Oγ3 

distances do not have any significant differences (Table .4 1). In our simulation timescale, we did 

not observe conformational transitions between the active and inactive states. Both mutations 

mostly remained close to the active state 2 configurations.  

 G60:N-GTP:Oγ2 (Å) T35:Oη-GTP:Oγ3 (Å) 

G12D  3.1 ± 0.3 2.8± 0.1 

pTyr32-G12D  3.1 ± 0.3 2.9 ± 0.1 

Table 4.1: Average Distance of T35 and G60 from GTP. 

 

4.5. Sodium ion interaction  

We noted by visual inspection of the trajectory of pTyr32-G12D mutant that the active site of the 

mutant is temporarily occupied by sodium ion in the last 120 ns of simulation (Figure 4.6). The 

Na+ in the active site is bound by the neighboring oxygen atoms of GTP:O2’ and the polar amino 

acids and negatively charged residues Asp30, Glu31 and Asp33 in SI region. We suggest that 
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mediating of a metal ion at this site stabilize the motion of pTyr32 sidechain through the 

displacement of pTyr32 sidechain to point to Mg+2 ion and γ-phosphate of GTP. 

 

Figure 4.6: Long-residence sodium-ion binding sites. A snap shot of pTyr-G12Dshowing a sodium ion interacting 

with GTP and SI. 

 

4.6. Markov state model analysis      

To get a better insight into the conformational changes for both mutations, we analyzed the 

simulation trajectories using Markov state models (MSMs) to explore the long-lived 

conformational dynamics for each system. The MSM identified five metastable states by using 

Perron-cluster cluster analysis (PCCA++) method, where each of these clusters represent highly 

identical conformational states (figure 4.7). The free energies for metastable states can be 

computed from their stationary probabilities by the relation 

𝐺𝑠𝑖
= −𝑘𝐵𝑇𝑙𝑛 ∑ 𝜋𝑗

𝑗∈𝑆𝑖

 (4.3) 

where 𝜋𝑗 is MSM stationary weight of the jth microstate (Table 4.2).  
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Figure 4.7: The five metastable states grouped from microstates. The trajectory cluster into microstate by 

assigning it to the 100 cluster centers using k-means clustering. The microstates grouped by (PCCA++) method into 

five metastable states. (A) pTyr32-G12D. The color code of metastable states 1 (blue), 2 (gray), 3 (black), 4 (green), 

5 (purple). (B) G12D K-Ras. The color code of metastable states I (blue), II (gray), III (black), IV (green), V 

(purple).     

 

G12D K-Ras 

Metastable state Si πSi free energy (kBT) 

I 21% 1.556 

II 39% 0.939 

III 20% 1.610 

IV 1% 4.282 

V 18% 1.692 

 

pTyr32-G12D 

Metastable state Si πSi free energy (kBT) 

1 10% 2.304 

2 3% 3.635 

3 14% 1.969 

4 11% 2.230 

5 63% 0.467 

 

Table 4.2: The stationary probability and the free energy of metastable states of G12D K-Ras and its 

phosphorylated variant. 
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The conformational changes between the different conformations are a slow process. The slowest 

MSM implied timescale of pTyr32-G12D is about 220 ns, but it is faster for G12D K-Ras with 

55 ns (see Figure 3.5). This suggests that simulation time is not enough to detect all the 

transitions among metastable states for pTyr32-G12D. Therefore, observing enough transitions 

will require simulations on the order of many 𝜇𝑠 long. In crystal structures, it is difficult to 

observe these dynamic metastable states because the structures of the switch regions are quickly 

disordered.  

Both mutations display different metastable state population distributions. pTyr32-G12D 

has one highly populated metastable state with probability 63% and low populated states with 

probability 3-14%. G12D K-Ras most populated metastable state has a probability of 39% and 

low populated states with probability 21-19% and its lowest populated state with probability 1%. 

The density of population indicates that several highly populated intermediate conformations 

were sampled. We also used the transition path theory to obtain the transition pathways and gain 

insights into how they are affected by mutations. Figure 4.8 shows metastable states and the 

transitions network among them. Table 4.3 shows the maximum transition pathway. The MSM 

metastable states confirmed the effect of Tyr32 phosphorylation on the switch regions 

conformations and dynamics 
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Figure 4.8: A network diagram of the five metastable states identified by the Markov state model. The 

metastable states are represented by circles, the arrows indicate the transition probabilities between the states. The 

structures describe the metastable states found in the MSM analysis, each circle illustrating ten representative protein 

conformations (generated using MSM), which identify also the SI (red) and SII (blue) regions. (A) pTyr32-G12D. 

(B) G12D K-Ras. The circle colors are the same as in figure 4.7. 

 



43 
 

G12D K-Ras 

Path Percentage 

I → II → III → V 55% 

I → II → V 16% 

I → II → IV → V 14% 

I → V 8% 

 

pTyr32-G12D 

Path Percentage 

   1 → 2 → 4 → 5 42% 

   1 → 4 → 5 24% 

  1 → 2 → 3 → 4 → 5 23% 

1 → 3 → 4 → 5 12% 
Table 4.3: The maximum four fluxes path of G12D K-Ras and its phosphorylated variant. 

To get further insight of mutants and metastable states differences we construct the RMSD 

matrix (Figure 4.9).  

 

Figure 4.9: RMSD matrices of SI and selected C atoms computed from MSMs metastable states 

trajectories.  The metastable states of pTyr32-G12D indicate by numbers (1-5) and the metastable states of G12D 

K-Ras indicate by Roman numbers (I-V). 

 

pTyr32-G12D switch regions show a different behavior. Unlike SII, SI shows remarkable 

dynamics differences across all metastable states. State 1 and state 2 have very similar 

conformation and Tyr32 side chain orientation does not show significant difference. Comparing 

state 4 and state 5 shows that conformations have similar Tyr32 side chain orientation. This 

suggests that state 2 and 4 represent intermediate states. However, states 1, 3 and 5 show critical 
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conformational changes in SI region due to the change in sidechain orientation of Tyr32. 

Notably, the last 120 ns of pTyr32-G12D trajectory mentioned in the previous subsection is 

represented by state 5. The sidechain orientation of Tyr32 seems to have a critical role in 

determining the metastable state of pTyr32-G12D.  In G12D K-Ras the metastable states I, II and 

III have similar conformations with relatively stable Tyr32 orientation. Nonetheless, it differs 

from the metastable states V and IV especially in SI region where states V and VI have unstable 

Tyr32 sidechain orientation.  

The differences in metastable states of both mutants are more significant in SI region. 

These differences in mutant dynamics and conformation revealed by different metastable states 

may affect protein activity and can be important for modulating a specific protein binding and 

pathway activation [21]. 

4.7. Conclusions   

The aim of this work is to understand the effects of specific mutations on the structure and 

dynamics of a protein. These effects might lead to differences in protein functions and hence 

give rise to different signal outputs. In particular, we identified the structural and dynamical 

differences between G12D K-Ras and its phosphorylated variant pTyr32-G12d. This was 

achieved by comparing conformational and dynamics differences between two 500ns unbiased 

MD simulation trajectories of both mutants. We also built Markov state models for both 

trajectories. In addition, we analyzed conformational fluctuations and GTP binding site 

configuration using other global measures such as RMSF, RMSD, PCA and torsion angle for 

Tyr32 to identify any other subtle changes in protein dynamics. Differential dynamics are 

particularly common in the vicinity of the GTP, but there are also variations at a number of loops 

distal from the active site. The switch regions of both proteins are significantly more flexible 
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than other parts of proteins. However, SI shows more flexibility in p Tyr32-G12D while SII 

shows more flexibility in G12D K-Ras. The analysis of the GTP binding site shows that both 

mutations remain in active state 1 which can interact with its effectors and leading to oncogenic 

signal output. Our results show that differential dynamics and conformations observed have 

implications for functional specialization including in GTPase activity and effector interaction. 

The simulations also revealed an interaction of sodium ions with the GTP and neighboring 

residues. These interactions were more prominent in the phosphorylated mutant. In this mutant, 

the entrance of a sodium ion is directly coupled with residues 30, 31 and 33. Ion binding also 

appears to be contributing to the orientation and displacement of Tyr32 toward γ-phosphate of 

GTP position. MSMs confirmed the effects of phosphorylation on conformations and dynamics. 

Namely, the switch regions of K-Ras. Finally, MSMs reveal the role of Tyr32 in determining the 

metastable states of both mutations. This suggests a direct potential of Tyr32 movement and 

orientation on GTP hydrolysis and effectors binding. 
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APPENDICES  

Appendix A: NAMD Molecular dynamics scripts  

A.1: TCL script to add harmonic restrains on CA atoms 

File name: Restrain.tcl 

mol load pdb "kras-wt.pdb" 

 

set all [atomselect top "all"] 

set fixatom0 [atomselect top "name CA"] 

 

$all set beta 0.0 

$fixatom0 set beta 0.0 

$all writepdb  kras-wt-restrain.pdb 

 

exit 

A.2: Equilibration script 

File name: equ.namd 

set MOL kras-wt 

set temp 310.15 

set boxw 64 

set boxz 64 

 

#Can get this from ?xtla parameter of last frame in the  

#charmm trajectory.   

 

structure $[98].psf 

coordinates $[98].pdb  

temperature 0  

 

paraTypeCharmm on 

parameters          toppar/par_all36m_prot.prm 

parameters          toppar/par_all36_na.prm 

parameters          toppar/par_all36_carb.prm 

parameters          toppar/par_all36_lipid.prm 

parameters          toppar/par_all36_cgenff.prm 

parameters          toppar/toppar_water_ions.str 

parameters          toppar/toppar_all36_na_nad_ppi.str 

 

outputEnergies  5000 

outputTiming    5000 

xstFreq         5000 

dcdFreq         5000 

wrapAll         on 
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wrapNearest     on 

 

rigidbonds      all 

timestep        2 

nonBondedFreq   1 

fullElectFrequency 2 

stepsPerCycle   10 

pairlistsPerCycle    2 

 

switching       on 

vdwForceSwitching   yes 

switchDist      8 

cutoff          10 

pairlistdist    12 

 

outputname $[98].0 

binaryoutput on 

 

restartname $[98].0 

restartfreq 5000 

 

######################################### 

cellBasisVector1        $boxw      00.00   00.00 

cellBasisVector2        00.00   $boxw   00.00 

cellBasisVector3        00.00   00.00   $boxz 

cellOrigin           0.    0.    0. 

######################################### 

Pme             on 

PmeGridsizeX    $boxw 

PmeGridsizeY    $boxw 

PmeGridsizeZ    $boxz 

 

exclude         scaled1-4 

1-4scaling      1.0 

 

 

######################################## 

# PRESSURE AND TEMPERATURE CONTROL 

######################################### 

 

langevin                on 

langevinDamping         1 

langevinTemp            $temp 

langevinHydrogen        no 

 

langevinPiston          on 

langevinPistonTarget    1.01325 

langevinPistonPeriod    200 

langevinPistonDecay     100 

langevinPistonTemp      $temp 
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useGroupPressure        yes     #THIS WILL ALLOW THE SYSTEM SMALLER FLUCTUATIONS 

useFlexibleCell no 

useConstantRatio no 

 

# 

# Restrained atoms for initial heating-up steps 

# 

constraints on 

consRef $[98]-restrain.pdb 

consKFile $[98]-restrain.pdb 

consKCol B 

constraintScaling       10.0 

 

 

 

######################################### 

#Minimize 

######################################### 

minimize 10000 

output $[98].min 

######################################### 

# Heat 

######################################### 

 

set tem 99.15; 

langevinPiston on 

while { $tem < $temp } {  

 langevinTemp $tem 

 run 50 

 output ${MOL}.heat 

 set tem [expr $tem + 20.0] 

} 

 

run 25000 

constraintScaling       5.0 

run 25000 

constraintScaling       2.5 

run 25000 

constraintScaling       1.25 

run 25000 

constraintScaling       0.0 

 

######################################### 

# Run 

######################################### 

run 500000 

output ${MOL}.0 
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A.3: Production script  

File name: prod.namd 

set MOL kras-wt 

set temp 310.15 

set boxw 64 

set boxz 64 

 

 

#Can get this from ?xtla parameter of last frame in the  

#charmm trajectory.   

set freq 5000 

set i  0 

set j [expr $i + 1] 

set previousfile ${MOL}.$i 

set nextfile  ${MOL}.$j 

firsttimestep 5060000 

 

structure ${MOL}.psf  

coordinates ${MOL}.pdb  

bincoordinates     ./${previousfile}.coor 

binvelocities      ./${previousfile}.vel 

extendedSystem     ./${previousfile}.xsc 

 

 

paraTypeCharmm on 

parameters          toppar/par_all36m_prot.prm 

parameters          toppar/par_all36_na.prm 

parameters          toppar/par_all36_carb.prm 

parameters          toppar/par_all36_lipid.prm 

parameters          toppar/par_all36_cgenff.prm 

parameters          toppar/toppar_water_ions.str 

parameters          toppar/toppar_all36_na_nad_ppi.str 

 

 

outputEnergies  $freq 

outputTiming    $freq 

xstFreq         $freq 

dcdFreq         $freq 

wrapAll         on 

wrapNearest     on 

 

rigidbonds      all 

timestep        2 

nonBondedFreq   1 

fullElectFrequency 2 

stepsPerCycle   10 

 

switching       on 
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vdwForceSwitching   yes 

switchDist      8 

cutoff          10 

pairlistdist    12 

 

outputname ${MOL}.$j 

binaryoutput off 

 

restartname ${MOL}.$j 

restartfreq $freq 

 

Pme             on 

PmeGridsizeX    $boxw 

PmeGridsizeY    $boxw 

PmeGridsizeZ    $boxw 

 

exclude         scaled1-4 

1-4scaling      1.0 

 

 

######################################## 

# PRESSURE AND TEMPERATURE CONTROL 

######################################### 

langevin                on 

langevinDamping         10 

langevinTemp            $temp 

langevinHydrogen        no 

 

langevinPiston          on 

langevinPistonTarget    1.01325 

langevinPistonPeriod    200 

langevinPistonDecay     100 

langevinPistonTemp      $temp 

 

useGroupPressure        yes     #THIS WILL ALLOW THE SYSTEM SMALLER FLUCTUATIONS 

useFlexibleCell no 

useConstantRatio no 

 

 

 

output ${nextfile} 

######################################### 

# Run 

######################################### 

run 500000000 
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Appendix B: Markov state models software scripts  

To build Markov state models we used the Python package PyEMMA [60] with the following 

scripts containing the inputs with some comments: 

 import pyemma 
pyemma.__version__ 

 

import numpy as np 
%pylab inline 

 

import os 
%pylab inline 

matplotlib.rcParams.update([93]) 

 

import pyemma.coordinates as coor 
 

# some helper funcs 

def average_by_state(dtraj, x, nstates): 

    assert(len(dtraj) == len(x)) 

    N = len(dtraj) 

    res = np.zeros((nstates)) 

    for i in range(nstates): 

        I = np.argwhere(dtraj == i)[:,0] 

        res[i] = np.mean(x[I]) 

    return res 

 

def avg_by_set(x, sets): 

    # compute mean positions of sets. This is important because of some technical points the set order 

    # in the coarse-grained TPT object can be different from the input order. 
    avg = np.zeros(len(sets)) 

    for i in range(len(sets)): 

        I = list(sets[i]) 

        avg[i] = np.mean(x[I]) 

    return avg 

 

 

# input dcd and pdb files 

trajfile = 'input.dcd' 

topfile = 'input.pdb' 

 

feat = coor.featurizer(topfile) 

 

inp = coor.source(trajfile, feat) 

print('trajectory length = ',inp.trajectory_length(0)) 

print('number of dimension = ',inp.dimension()) 

 

# TICA with 1 ns (10 steps ) lag time  
lag=10 

tica_obj = coor.tica(inp, lag=lag,dim=2, kinetic_map=False) 



57 
 

# here we get the data that has been projected onto the first 2 IC's.  

Y = tica_obj.get_output()[0] 

 

# plot IC1 and IC2 

subplot2grid((2,1),(0,0)) 

plot(Y[:,0]) 

ylabel('ind. comp. 1') 

subplot2grid((2,1),(1,0)) 

plot(Y[:,1]) 

ylabel('ind. comp. 2') 

xlabel('time (100 ps)') 

 

print('Mean values: ', np.mean(Y, axis=0)) 

print('Variances:   ', np.var(Y, axis=0)) 

 

# relaxation timescales 

print(-lag/np.log(tica_obj.eigenvalues[:5])) 

#The eigenvalues of the TICA transform are the values of these autocorrelations at the chosen lag time. We 
can even interpret them in terms of relaxation timescales 

 
 

# histogram data 

z,x,y = np.histogram2d(Y[:,0],Y[:,1], bins=50) 

# compute free energies 

F = -np.log(z) 

# contour plot 
extent = [x[0], x[-1], y[0], y[-1]] 

#contourf(F.T, 50, cmap=plt.cm.seismic, extent=extent,interpolation='nearest') 

contourf(F.T, 50, cmap=plt.cm.hot, extent=extent) 

#save_figure('kras_ph_histogarm.png') 

plt.axis([-2.5 , 2.5, -2.5 ,2.5]) 

 

# kmeans clustering with 100 cluster centers and 20 iterations 

cl = coor.cluster_kmeans(data=Y, k=100, stride=1,max_iter=20) 

dtrajs = cl.dtrajs 

cc_x = cl.clustercenters[:,0] 

cc_y = cl.clustercenters[:,1] 

 

# plot histogram with kmeans cluster crnters  
contourf(F.T,50, cmap=plt.cm.hot, extent=extent) 

plot(cc_x,cc_y, linewidth=0, marker='.') 

 

# MSM estimation  

import pyemma.msm as msm 

import pyemma.plots as mplt 

 

# MSM estimation  
# To estimate a Markov model at each of the given lag times τ (that are multiples of our saving step, multipl

es of 100 ps), compute the eigenvalues of each transition matrix, λi(τ), and then compute the relaxation time
scales 

lags = [1,2,5,10,20,50,100] 

its = msm.its(dtrajs, lags=lags, nits=7, reversible=True, connected=True, weights='empirical', errors=None

, nsamples=50, n_jobs=None, show_progress=True, mincount_connectivity='1/n') 
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#compute errors using Bayesian MSMs and plot  
its = msm.its(dtrajs, lags=lags, nits=7,errors='bayes') 

 

mplt.plot_implied_timescales(its) 

ylim(0,10000) 

xlim(0,100) 

 

# Bayesian Markov model estimation, discrete trajectories obtained from the clustering and the lag time 2 n

s(20 steps): 
M = msm.bayesian_markov_model(dtrajs,20,reversible=True) 

print('fraction of states used = ', M.active_state_fraction) 

print('fraction of counts used = ', M.active_count_fraction) 

 

# Spectral analysis 
# timescale computed from MSM eigenvalues 

plot(M.timescales()/10,linewidth=0,marker='o') 

xlabel('index'); ylabel('timescale (ns)'); xlim(-0.5,10.5) 

# timescale separation 

plot(M.timescales()[:-1]/M.timescales()[1:], linewidth=0,marker='o') 

xlabel('index'); ylabel('timescale separation'); xlim(-0.5,10.5) 

 

# PCCA++ do with 5 states now 
M.pcca(5) 

pcca_dist = M.metastable_distributions 

  

# Representative Structures with 10 frame indexes  

pcca_samples = M.sample_by_distributions(pcca_dist, 10) 

 

coor.save_traj(inp, pcca_samples[0], 'output1.dcd') 

coor.save_traj(inp, pcca_samples[1], 'output2.dcd') 

coor.save_traj(inp, pcca_samples[2], 'output3.dcd') 

coor.save_traj(inp, pcca_samples[3], 'output4.dcd') 

coor.save_traj(inp, pcca_samples[4], 'output5.dcd') 

 

# Transition pathways and Committors 

# do PCCA++ with 5 states now 

M.pcca(5) 

pcca_sets_5 = M.metastable_sets 

 

# Plot PCCA++ macrostates 

figure(figsize=(8,5)) 

pcca_sets = M.metastable_sets 

contourf(F.T, 50, cmap=plt.cm.hot, extent=extent) 

size = 50 

cols = ['gray' ,'blue','green','black','purple'] 

for i in range(5): 

    scatter(cc_x[pcca_sets_5[i]], cc_y[pcca_sets_5[i]], color=cols[i], s=size) 

 

#we select as two end-states the leftmost and the rightmost of these 5 sets 

# The average positions along the first TICA coordinate: 

xavg = avg_by_set(cc_x, pcca_sets_5) 

A = pcca_sets_5[xavg.argmax()] 
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B = pcca_sets_5[xavg.argmin()] 

 

 

# compute mean positions of sets. This is important because of some technical points the set order in the coa

rse-grained TPT object can be different from the input order. 
avgpos = np.zeros((5,2)) 

avgpos[:,0] = avg_by_set(cc_x, cg) 

avgpos[:,1] = avg_by_set(cc_y, cg) 

 

# TPT with reversible process 
# Plot the metastable states and the transitions  

fig, _=mplt.plot_flux(cgflux, avgpos, attribute_to_plot='gross_flux') 

cf=contourf(F.T, 50, cmap=plt.cm.hot, extent=extent, fig=fig, zorder=0) 

   

# decompose the flux into individual pathways, along with their fluxes by: 
paths, path_fluxes = cgflux.pathways(fraction=0.99) 

print('percentage       \tpath') 

print('-------------------------------------') 

for i in range(len(paths)): 

    print((path_fluxes[i] / np.sum(path_fluxes)),' \t', paths[i]) 

 

# Validate MSM with 2 ns (20 steps ) lag time and 5 metastable states by  CK test.    

ck = M.cktest(5, mlags=11, err_est=True) 

mplt.plot_cktest(ck, diag=True, figsize=(7,7),layout=(3,2),  padding_top=0.1, y01=True, padding_between

=0.1, dt=0.1, units=' ns') 

 

 

 


