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ABSTRACT

Mutations in protein amino acids are usually associated with several challenging diseases such as
cancer, sickle cell anemia, and Alzheimer. Ras proteins are small GTPase proteins that regulate
the signaling pathway for cell growth, proliferation and differentiation. Mutations of Ras proteins
are observed in many human cancers. Therefore, numerous studies of Ras proteins are carried
out to investigate mutations on their conformational differences, dynamics, allosteric
communications and signaling. In this work, we used molecular dynamics simulations and
Markov state models to study the effects of TYR32 phosphorylation on G12D K-Ras. Markov
state models provided us with a coarse-grained picture consisting of few metastable state
conformations. They also helped us identify the probability of each one of these states along with
the Kinetic transition rates among them. We show that the phosphorylation significantly alters
switch region conformations and dynamics. In addition, we show that G12D K-Ras and its

phosphorylated mutant exhibit different conformational states.
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CHAPTER 1: INTRODUCTION

Understanding the dynamics of a protein and its three-dimensional structure from their amino
acid sequences is important to decipher its function and malfunction. For example, many
diseases are associated with changes in protein structure such as sickle cell anemia, Alzheimer
and cancer. In this thesis, we are interested in studying Ras mutations which have been shown to
play a critical role in many human cancers. In particular, phosphorylation of Tyr32 in K-Ras has
evidently been shown to influence its catalytic activity and function by disrupting its GTPase
cycle, and hence leading to different types of cancer. In this work, we investigated the
conformational and dynamical effects of Tyr32 phosphorylation in G12D K-Ras by molecular
dynamics (MD) simulation and Markov state models. The thesis is organized as follows: First,
we give a brief introduction about K-Ras protein and MD simulations. In the second chapter, we
briefly introduce Markov state models and the different related techniques required to build it. In
chapter 3, we describe the setup of our MD simulations systems and the procedure used to carry
out these simulations. We also describe the method used to build Markov state models from MD
simulation trajectories. Finally, the last chapter discusses the results obtained from MD
simulations and Markov state models constructed for G12D K-Ras and its phosphorylated

variant.

1.1. K-Ras protein

Kirsten Rat Sarcoma (K-Ras) protein is one of the best characterized and ubiquitously expressed
GTPases in most human cells [1]. It selectively attaches to the inner leaflet surface of the plasma
via a farnesylated C-terminus and polybasic domain [2, 3]. K-Ras structure features two main

domain components: the catalytic domain (Figure 1.1B, amino acids 1—166) and the membrane
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Figure 1.1: G12D K-Ras sequence and structure. (A) The sequence of the amino acids of the catalytic domain
(amino acids 1-166) and HVR (amino acids 167—-189) of G12D K-Ras proteins. The Sl and SllI regions are
highlighted by bold font, while the residues 12 and 32 highlighted in red. (B) G12D K-Ras structure shown in
cartoon with the location of the mutations studied in this work. Residues 12 and 32 are highlighted by purple and
green spheres respectively. Switches Sl and SlI (residues 60-75) are in red and blue respectively.

targeting (HVR region, amino acids 167—189 + farnesyl anchor). The latter membrane anchoring
region is not conserved and has notable sequence differences among Ras isoforms (Figure 1.1B).

Conversely, the highly conserved catalytic domain of K-Ras interacts with effectors and



exchange factors by modulating the conformations of two flexible canonical switches: switch 1
(SI: residues 25—40) and 2 (SII: residues 60—75). These conformation changes are primarily
modulated by the hydrolysis of GTP molecule to GDP which represents the molecular switch
state changing from the active to the inactive state [4, 5]. In GTP bound state, the two switches
and the P-loop (residues 10—17) form the closed conformation of GTP binding site. Ras is
activated by guanine nucleotide-binding site and the Ras-GTP binding activate downstream
effector effectors, including Raf kinase, PI3K, and Ral guanine nucleotide dissociation stimulator
(RalGDS) [6-9]. Similar to other Ras isoforms, it regulates the slinging pathways controlling

growth, proliferations and differentiation of cells [10-12].

It has been shown that in oncogenic Ras, mutations affect GTP hydrolysis [13, 14], and
that mutations at 32 position particularly exhibit reduced catalytic activity [15]. The activity of
GTPases is also decreased by the mutation of K-Ras G12X that lead to increased K-Ras
signaling and more active GTP-bound present [16, 17]. Notably, G12D K-Ras mutation is the
most frequently mutated oncogenic found in human cancer. Most G12X mutations show
insensitivity to GTPase-activating protein (GAPs) that accelerate GTP hydrolysis [19].
Furthermore, oncogenic Ras mutants activate the downstream effectors that promote cell
proliferation, consequently leading to tumor development. [18, 20]. The role of Tyr32 in
determining configuration of the active site has been long established. It has been shown that
Tyr32 has a critical role in inducing the conformational change in Ras that modulates its GTPase
activity and the effector binding [21-23]. Gorfe and Coworkers suggested that Tyr32 orientation
along with the relative arrangement of Sl and SlI can be used to uniquely determine the active

and inactive conformations in many experimental and simulated structures [24].



The phosphorylation of protein has a significant effect on its function effects and
conformational states. It usually alters the local chemical environment by creating a chemical
shift in the modified residues and their adjacent residues [25, 26]. For example, the
phosphorylation and dephosphorylation process of Ras modulate its activity and they are mainly
mediated by Src and SHP2 protein tyrosine phosphate (PTP) [27]. The phosphorylation process
induced by Src regulates the GTPase cycle by impairing Raf binding [28]. In contrast, the
dephosphorylation process induced by SHP2 negatively impact the GTPase cycle by enhancing
Raf binding [29]. Therefore, any disruption to the balance between these processes may lead to

adverse functional effects and various cancers.

Recent biophysical experiments have suggested that phosphorylation of Tyr32 of K-Ras
attenuates its sensitivity to GAP and GEF activities which induced intrinsic nucleotide exchange
and impair intrinsic GTP hydrolysis. It reduces the binding affinity of K-Ras to its effector Raf
[30]. Tyr32 phosphorylation is thought to alter SI and Sl conformations as a result of the
additional electrostatics repulsion against the negatively charged Asp38 and Asp57 residues
within the nucleotide-binding site [31]. The conformation changes in the orientation of SI which
significantly affects the affinity of Ras for its effector proteins Raf, lead to reducing downstream
signaling mitogen-activated extracellular signal-regulated kinase (MEK)-to-extracellular signal-

regulated kinase (ERK) and phosphoinositide-3 kinase-to-AKT signaling [31].

Although these experimental studies have revealed the importance of Tyr32
phosphorylation, its effects on K-Ras structure and dynamics are still not fully understood.
Several MD simulation studies investigated the structure, dynamics and function of Ras
oligomerization, isoforms or mutants [32-40]. To that end, in this work we investigate the

underlying structural and dynamical changes that lead to effects observed due to phosphorylation
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of Tyr32 of K-Ras. We therefore carried out two 500 ns MD simulations of G12D K-Ras and
pTyr32-G12D. Also, we identified metastable conformational states and the kinetic network of

transitions between them using Markov state model (MSM).

1.2. Molecular dynamic simulations

MD simulations are commonly utilized to study the physical and chemical properties of a system
of molecules or atoms. In fact, they are currently one of the important methods to study the
structure and function of proteins. They also enable us to estimate protein physical properties
that might be difficult to access through experiments. In the last decades, protein simulations had
a big evolution due to the use of supercomputers and development of new more efficient

techniques [36, 41-49].

In MD simulations, the physical motions of atoms in a protein are resolved by the
integration of Newton equations of motion for every atom in the system in which the initial
coordinates are taken from X-ray crystal or NMR structures [50]:

a2t
Mi e

= . (1.2)
= —V,V(ry, 1, «oer ., IN)

where m; and t; are the mass and coordinates of each atom in the system respectively. The
potential energy, V, is estimated using a force field for a system of N interacting atoms. It is

given by



1 1 1
V= Z Ekb(r_ro)z‘l' Z §k9(9—90)2+ Z Ekf(f—fo)z
bonds angles improper
dihedrals (1.2)

+ Z kg1 + cos(ng — &)]

dihedrals
12 6
1 qiq; Rmin Rmin
T L dmey ;U\ iz T e
atom 0 "y ij ij
pairs

where 1, and 6, are the equilibrium bond length and angle, respectively. ¢ is the dihedral angle
and n is the multiplicity of the function. ky, kg, k¢ and k¢ are the bond, angle, improper dihedral
and dihedral constants, respectively. € and R,,;, are the well depth and zeros of the Lennard-
Jones potential. €, is the free space permittivity and q is the localized charge on each atom.
Finally, r;;’s are the inter-particle distances. The Force field function contains bonded and non-
bonded terms. Bonded terms include harmonic oscillator energy of bond lengths, bond angles,
and sometimes improper dihedrals as well as torsional dihedral angles. The non-bonded terms
include Van der Waals interactions and electrostatic interactions. Examples of force fields

available to study proteins are CHARMM [51], AMBER [52] and GROMOS [53].



CHAPTER 2: MARKOV STATE MODELS

Markov state models [54] deal with a statistical process called Markov chains in which only the
current state of a system can affect its transition to the next state. The state is considered
memoryless if the future state depends only on the current state and not on previous states in the
system. The system is called Markovian if all states in the system are memoryless. In the late
1990s, Schiitte and his colleagues used Markov state models to understand MD trajectories [55].
Markov state models and related techniques have also been developed with the availability of
significant computing power for a few research groups since the mid 2000s [56-58]. Nowadays,
Markov state models (MSMs) have become a popular technique in computational biophysics for
the identification of stationary and kinetic states from MDs trajectories. User-friendly software is
available for building Markov state models such as MSMbuilder [59] and PYEMMA [60]. MSMs
have been used to analyze many complex molecular processes such as protein folding [61],

protein-ligand binding [62, 63], peptide dynamic [64] and peptide aggregations [65].

MSMs are also used for determining molecular kinetics [66]. They can readily describe
the slow relaxation processes by kinetic characterization. They can identify the structural
changes for these processes and approximate the rates and time scales at which they occur. The
model built to approximate a MD trajectory by a Markov chain requires partitioning the

conformation space into discrete states. It estimates the kinetic behavior of the system with
transition probability matrix that helps find the system in any discrete state after a fixed time t.

The discrete description of molecular kinetics approximates the exact eigenvector and eigenvalue

of the propagator of continuous dynamics.



Po; = 4, (2.1)

where P is the transfer operator that propagates probability densities of molecular
configurations, ¢; are its eigenfunctions, and A; are the associated eigenvalues. Eq.(2.1) defines

all stationary and kinetic quantities when solved for eigenvalues and associated eigenfunctions.

Letry,...,7; € R be a possible large set of d order parameters of a molecular system that
are a priori specified. We aim to find a linear combination of these order parameters that
optimally approximate the subspace spanned by the dominant eigenfunctions. Here, the
variational principle of conformation dynamics is used to get the best solution for the problem.
Furthermore, Time-lagged independent component analysis (TICA) that combine information
from the covariance matrix and a time-lagged covariance matrix of the data is used for
constructing Markov models. Principal component analysis (PCA) is another method used for
dimension reduction of an order parameter space by projecting it on its linear subspace of the
largest amplitude motion. But, in this case slow modes are not necessarily associated with large

amplitudes.

2.1. Theory

2.1.1. Exact dynamics in full configuration space
Let x, be the full molecular configuration at time t in a state or phase space Q. We assume that
the MD are statistically reversible Markovian in Q and the stationary density @ (x) is given by a

Boltzmann distribution density:

M(X) = Z_le_BH(X) (22)



where H is the Hamiltonian of the system, Z is the partition function, and § = (kgT) 1 is the

inverse temperature.

If the propagator P(t) acts on the probability density of molecular configuration p;, it
will describe the probability that a trajectory at configuration x, at time t will be found at a

configuration x,, . after t time interval:

Peir = P(T)pe (2.3)

The propagator can be written by expanding it in terms of its eigenvalues as
(1) = e7 T/t (2.4)

where t; are the corresponding timescales; it relates to eigenvalues and experimentally

measurable relaxation rate x; of the system as

InA; 2.5
t7t=K; = s} (25)
T
And its eigenfunctions ¢; can be written as:
S (2.6)
pesc) = POPe(x) = ) e V(ihy po)h
i=1

The first eigenvalue is A = 1 with first relaxation timescales t; = e and correspond to the
stationary distributions, while the remaining eigenvalues have a norm strictly smaller than 1 with
finite relaxation timescale t;. y;(x) are the weighted eigenfunctions by a stationary density
where 1;(x) = u~1(x)¢;(x) .The scalar product (i;, p,) represents the overlap of the starting

density p, with i** eigenfunction. It determines the amplitude by which the eigenfunction



contributes to the dynamics. The contributions of all basis function ¢; to the probability density
Pe+r decrease with time. After infinite time ¢ — <o only the first term with t; = <cis left and the

stationary density is reached: lim P(1)p; = b, = u.
T

At large times, the dynamics will be governed by m largest timescales. So, we are
interested just in slowest timescales with T > t,,,,. At these timescales all the kinetic properties
and stationary distributions can be accurately approximated when only the dominant m
eigenvalues and eigenvectors are used [66]:

% 2.7)
peve =P@pe = ) e (i, pp
i=1
2.1.2. Approximation of slowest timescales and the related eigenfunctions:

From Eq.(2.6) the time autocorrelation function of some function of molecular configuration

f(x) as a function of 7 is given by:

- 28)
(PO Cesd)i = ) e/, f?

i=1

Since the two eigenfunctions ¥;(x) and ¢;(x) are interchangeable, we can use the time
autocorrelation function of the eigenfunction 1;(x) to yield the exact i** eigenvalue [67], and

thus permit us to get the exact i timescale:

Ai(@) = i)Y (Key )i = e/t (2.9)

A T (2.10)
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In practice, we cannot know the exact eigenfunctions y; (x).Hence, the variational principle of
conformation dynamics [67] can be used to construct a model function for y;(x) such that the
normalized time-autocorrelation function (; (x)) approximates the true eigenvalues and

timescales

<l/)Ai(Xt)l/)Ai(Xt+r)) < e "t (2.11)
and
£ <t (2.12)

Therefore, we must look for a function 1, that has the maximum timescale t; for finding the best
approximation of the i** timescale and its associated eigenfunction. All of the first m timescales
will however be underestimated when the Markov model is used to approximate the slowest
processes. It was shown [68, 69] that the estimation error becomes smaller when 7 is increased.
As a result, when plotting the estimated timescales ;(7) as a function of T one obtains the well-
known implied timescale, where the estimated timescales £;(7) slowly converge to the true

timescale as 7 is increased.

2.1.3. Best approximation of the eigenfunctions

To approximate the eigenfunctions i; by a functions i;that is a linear combination of basis

functions (), ) which must be a priori defined by

i n (2.13)
$i0) = > buct(9)
k=1
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The problem is to find the optimal parameters b;;, that will be denoted by a vector b; € R™.The
coefficients b; will give us the optimal approximation of the eigenvalues and its corresponding
timescales. We aim to get the optimal set of coefficients for an orthogonal basis set that requires

them to be uncorrelated at lag-time O:
cf(0) = (o xjdu = DX x))e = 6y (2.14)
If the covariance matrix at lag-time 7 between functions is defined by
C§§ = XXX Xero))e (2.15)
then the eigenvector b;gives us the optimal set of the coefficient
CX(7)b; = b;A;(7) (2.16)

For the more general case of a non-orthonormal basis set, the optimal approximation to the exact

eigenvalues and eigenfunctions is obtained by solving the generalized eigenvalue problem:
CX(T)bi = CX(O)blil (T) (217)

The two equations EQ.(2.16) and Eq.(2.17) are known from variational calculus. To get the
optimal approximation of exact eigenfunctions we need to solve Eq.(2.17) with correlation
matrix for lag- time 0 (principal component analysis) and t (Time-lagged independent
component analysis) that will provide us with the linear combination of order parameters. You
need to make clear that PCA and TICA give two different results. They are not complementary,

are they?
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2.2. Dimension reduction and discretization

2.2.1. Principal component analysis (PCA)

MD usually utilizes principal component analysis to identify a linear subspace in which the large
amplitude motions. PCA transforms linearly the coordinates provided that their instantaneous

correlation vanishes [70, 71].
.The elements of the covariance matrix C" of the order parameter r is defined by
cij(0) = (ry1;) (2.18)

PCA transforms the data into orthogonal basis, where the new coordinates are uncorrelated for

i # j .The principle eigenvectors w; can be obtained by solving the eigenvalue problem:

C"w; = w;a} (2.19)
or in matrix form

C"W = Wx2 (2.20)

where W = [wy, ...,wy] is the eigenvector matrix and 2? = diag (a2, ...,02) is the variance
matrix. The eigenvalues of the matrix measure the variance of the data along the principal
direction, while the eigenvectors are used to transform an original coordinate vector r into

principal components:

T'=+Tw (2.21)

<
|
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If the variance o7 is decay quickly with i, one often selects a threshold and ignores all PCs with
smaller 7. PCA used as dimension reduction tool by using the first m dominant column vectors

of W. The fraction of variance of dimension reduction is

?;1 O_iZ (222)

V., =
d TV

where TV is the total variance: TV = Y&, o7.

2.2.2. Time-lagged independent component analysis (TICA)

TICA [72] applies a linear transformation to the order parameter. It is an optimal method to
detect the slow reaction coordinates and their relaxation timescales. TICA uses a time-lagged
covariance matrix C"(t) to get a new set of order parameter that are uncorrelated and their

autocovariances at a fixed lag-time T are maximum.
¢ij (@) = (ri(Or;(t + 1)) (2.23)

To get uncorrelated independent component €"(0) diagonalized by transformation matrix U =
[u,, ..., uz], and maximizes the autocorrelations c(t) = u! C"(t)u; for every column u; of U.

One then solves the generalized eigenvalue problem:
Cr(T)ui = Cr(O)uij.i(T) (224)

The independent components y(t) are then obtained from the original coordinate vector r(t) as

follows

yT =+TU (2.25)
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The new order parameter or independent component with largest autocovariances A;(t) will be
called dominant. If we have m dominant IC’s which describe most of slow processes, the
fraction of the kinetic variance retained by the dimension reduction is

. m_A3(1) (2.26)
mo . TKV

where the total kinetic variance is

a 2.27
TKV = Z A%(1) (227)
i=2
The squared eigenvalues A? are in the range [0, 1], where values near 1 are for slow processes
and value near are 0O for fast processes. This means that TKV measures the number of slow

processes found in the data.

2.2.3. Discretization of state space

In Markov models a step-function basis is chosen to build it. This gives an optimal step-function
approximation to the eigenfunctions and maximal eigenvalues amongst all choices of functions
that can be supported by the clustering. Markov models assigning every configuration (x)
uniquely to one of the geometric clusters that will be used to construct the model. It can be
shown [73] that this operation is equivalent to using basis functions. The discretization of state
space Q inton sets S = {S;, ..., S, } which entirely partition the state space and have no overlap.
The probability of a point x to belong to set i is found by a membership function y;(x) with the

property 7, x;(x) = 1. The state space is partitioned using crisp partition with step functions:

1 x€S, 2.28
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Each basis function y; is a step function which has a constant value for all configurations
belonging to the i cluster and is zero elsewhere. The crisp partition considers n centers X;, i =
1, ...,n, and set S; defines as all the point x € §; that are closer to X; more than any other center

[74]. This basis is an orthonormal basis set where

1r 2.29
Xoxphy=—| w®dx=4; (2.29)
4 XES;
The stationary probability r; to be in set i according to the full stationary density given as:
T = f u(x)dx (2.30)
XESL'
and the local stationary density ;) restricted to set i is
X 2.31
p(x) X €S, (2.31)
pi(x) = T;
0 X¢&S;

where the local partition of state space does not require information about the full state space.

2.3. Transition matrix
Markov models require defining transition matrix elements T;;(7) that give the probability of

finding the system in state j at time t +  starting in state i at time t [69, 75].

Tij(’l') = ]P[X(t + T) € SJIX(t) € Sl] (232)

_ Px(t+1) €S;n x(t) € 5]
N P[x(t) € S;]

16



—‘;esi ,ul.(x)p(x, S;; ‘L') dx
B u, (x)dx

XESi

We have to integrate over local equilibrium sets u;(x) as a weight to obtain the transition matrix,
which facilitates the estimation of the transition probabilities. This approach does not require any
information about the global equilibrium of the system and just gives the dynamic information
over time period 7. The transition matrix is also related to the correlation function by

_ ]Et[)(i(xt))(j(xt+‘r)] _ Cicjorr (2.33)
O =" el m

The probability density of the system of state j at time t + = will be given by the P should be a

rho to be consistent

n (2.34)
P+ = ) Ty
i=1
or in matrix notation
PT